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Who Proved Haag’s Theorem?

Tracy Lupher1

In physics literature, there are several different characterizations of Haag’s theorem and
its consequences for quantum field theory. These different versions of Haag’s theorem
are due in part to various generalizations and more “rigorous” proofs of Haag’s theorem
as well as to the fact that many of these proofs were done using different formulations
of quantum field theory. As a result, there is confusion about what Haag’s theorem is
and when it was proved. This paper clears up some of these confusions by examining
the history and development of Haag’s theorem up to 1959. It is argued that the question
of who proved Haag’s theorem is tied up with what the theorem is taken to show.
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1. INTRODUCTION

Haag’s original theorem assumed that there are two sets of field operators
that satisfy the canonical commutation relations: (1) the free, or asymptotic fields,
which occur at time t = ±∞, and (2) the “actual” fields, which occur at any
finite time and that the theory can be formulated entirely from them. He also
assumed that (3) there is a unique invariant normalizable vacuum state for the
theory, that (4) there is a positive definite energy spectrum, and that (5) the
“actual” fields are transformed by unitary operators representing translations in
space. From these assumptions, Haag showed that (1) and (2) cannot belong to
the same representation of the canonical commutation relations; they are unitarily
inequivalent representations.

Haag’s theorem is an important result in quantum field theory that has not
been examined in much depth in the philosophy of physics literature. What it is
and what follows from it has been an area of controversy in physics. Philosophers
of physics have tended to view it as an important area for study, but few have
done much to clarify the nature and scope of Haag’s theorem. To the extent that
philosophers of physics do discuss Haag’s theorem, their analysis is promissory
at best.
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2. WHAT IS HAAG’S THEOREM?

Haag’s theorem is generally taken to show that there are severe to insur-
mountable mathematical difficulties modeling interactions in quantum field the-
ory. The nature and extent of these mathematical difficulties are the loci of debate
about the significance (or insignificance) of Haag’s theorem. Here is how Teller, a
philosopher of physics, described Haag’s theorem:

According to something called Haag’s theorem, there appears to be no known con-
sistent mathematical formalism within which interacting quantum field theory can be
expressed. (Teller, 1995)

A more conservative description is given by the physicists Streater and
Wightman.

Haag’s theorem is very inconvenient; it means that the interaction picture exists only if
there is no interaction (Streater and Wightman, 2000).

Streater and Wightman do not make the stronger statement, as Teller did. Rather,
they take Haag’s theorem to show that the interaction picture is empty of in-
teractions in canonical quantum field theory on Fock space.2 But in either
case, Haag’s theorem is a significant result for the foundations of quantum
field theory. What conclusions have philosophers of physics reached on Haag’s
theorem?

3. CONFLICTING REACTIONS OF PHILOSOPHERS OF PHYSICS

As shocking as Haag’s theorem appears, philosophers of physics have done
very little to explicate it. The few who mention it tend to regard it as something
important that someone (else) should investigate thoroughly.

[Haag’s theorem] implies, for example, that the only QFTs that exist in the interaction
picture describe free fields. Since this is the framework used by physicists to describe
the interacting theories of nature, the theorem seemingly presents a paradox (Huggett
and Weingard, 1996).

Everyone must agree that as a piece of mathematics, Haag’s theorem is a valid result
that at least appears to call into question the mathematical foundations of interacting
quantum field theory, and agree that at the same time the theory has proved astonishingly
successful in application to experimental results. What seems less clear is how the
assumptions of the theorem should be brought to bear on both the product and the
interpretation of the theory . . . I have no light to throw on these important questions.
In this chapter, my exposition will proceed along lines almost universally accepted by
practitioners of the theory, disregarding Haag’s theorem. (Teller, 1995)

2 Presumably, one reason they did not make the stronger statement put forth by Teller was the limited
success of constructive field theory; the demonstrated ability to model specific interactions in two- and
three-dimensions but not yet in four-dimensions.
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But there is also a dissenting view in the philosophy of physics literature about
the significance of Haag’s theorem.

There may be a presence within a theory of conceptual problems that appear to be the
result of mathematical artifacts. These seem to the theoretician to be not fundamental
problems rooted in some deep physical mistake in the theory, but, rather, the conse-
quence of some misfortune in the way in which the theory has been expressed. Haag’s
Theorem is, perhaps, a difficulty of this kind. (Sklar, 2000)

One thing to notice in these quotations is the use of modifiers such as “seemingly,”
“at least appears to,” and “perhaps” in their discussion of Haag’s theorem. No
one has taken a very firm stand on what the consequences of Haag’s theorem
may be. Nor has anyone provided an argument for the significance or insignif-
icance.3 A plausible explanation for this hesitancy to take a stand on Haag’s
theorem is obtained by doing a quick search of the physics literature. One will
find many different papers claiming to prove, “rigorously” prove, or to prove a
“generalized” version of Haag’s theorem. These proofs are sometimes done un-
der different formulations of quantum field theory such as Wightman’s axiomatic
approach or the LSZ approach. Thus, it is not clear whether Haag’s theorem ap-
plies generally or only to some approaches to quantum field theory and not to
others.

4. CONFLICTING REACTIONS OF PHYSICISTS

There are several different opinions about the significance of Haag’s theo-
rem in the physicist community. For example, Wightman and Roman considered
Haag’s theorem an important result in quantum field theory.

[T]here is a widespread opinion that the phenomena associated with Haag’s Theorem
are somehow pathological and irrelevant for real physics . . . I make one more attempt
to explain why that is not the case. (Wightman, 1965)

Haag’s Theorem is very deep. . .The most sobering consequence of Haag’s theorem is
that the interaction picture of canonical field theory cannot exist unless there are no
interactions. (Roman, 1969)

On the insignificance side of the debate is Källén who said the following:

[T]he theorem discovered by van Hove and Friedrichs and usually referred to as the
“Haag theorem” is really of a very trivial nature and it does not mean that the eigenvalues
of a Hamiltonian never exist or anything that fundamental. (Källén, 1962)

The connection between Haag’s theorem and certain problems with the Hamil-
tonian that Källén mentioned in the quotation above will be discussed below in
connection with van Hove’s work.

3 The only exception that I have found is an article by Heathcote (1989), but his article is mainly
focused on his view of causality.
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Other field theorists choose not to worry about Haag’s theorem or its possible
implications on their work. Their calculations have been empirically verified, and
they have little concern about a mathematical result that says that they may not be
calculating the results of various interactions.

[L]et us first ask what we are to make of it when we find practicising field theorists
plunging ahead, presenting their theory with blithe indifference to the problems posed
by Haag’s theorem. As I understand the history of the subject, quantum field theory
was developed in ignorance of these mathematical problems. Indeed, the theory was
initially formulated and applied with astonishing empirical success in the late 1940s,
while the difficulties here in question did not come to light until the mid 1950s. Even
the existence of the problems did not become widely known. And even when they were
appreciated, most field theorists were not about to let such formal problems get them
sidetracked from the obviously impressive successes of their theories. Work continued
as if these formal problems did not exist—theorists took a “Damn the mathematical
torpedoes, full speed ahead!” attitude (Teller, 1998).

Some physicists who have heard of Haag’s theorem misunderstand it. Teller (1998)
recalled one instance of talking to a “prominent field theorist” about Haag’s
theorem who incorrectly dismissed it as having to do with issues of mathematical
rigor associated with the delta function. It is stories like these that most likely
led to Streater (1975) calling Haag’s theorem, “one of the most widely misquoted
results of the subject [quantum field theory].”4

5. THE NEGLECT OF HAAG’S PROOF

If one looks for a discussion of Haag’s theorem in books on quantum field
theory, one will hardly find a mention of it in textbooks written after the 1970s. The
standard textbooks of quantum field theory such as Peskin and Schroeder (1995),
Ryder (1996), and Weinberg (1995) do not mention Haag’s theorem. If one wants
to find textbook discussions of Haag’s theorem, then it is necessary to look at
textbooks written in the 1960s and 1970s, e.g. Roman (1969), Barton (1963),
Streater and Wightman (2000; originally published in 1964), and Bogolubov
et al. (1975). However, these discussions of Haag’s theorem focus on Hall and
Wightman’s proof of a “generalized” Haag’s theorem and they do so in the context
of Wightman’s axiomatic formulation of quantum field theory. There is rarely any
analysis of Haag’s original proof. This begs the question as to why these quantum
field theorists do not bother to analyze Haag’s original proof.

4 Streater cited as an example of this the textbook by Bjorken and Drell (1965). In their chapter on
perturbation theory, they assumed that the interacting and incoming free fields were connected at
each time t by a unitary transformation. In a footnote on p. 175, they stated that the existence of
such a unitary transformation breaks down for systems with a nondenumerable number of degrees
of freedom and cite Haag’s 1955 paper, but then they assume the existence of such a unitary
transformation!
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Part of the answer is that in the 1960s and 1970s, quite a bit of work was being
done on new approaches to quantum field theory, while Haag’s original paper was
based on quantum field theory from the late 1940s through the early 1950s. I have
only found two sources that do more than merely cite Haag’s paper. In Hall and
Wightman’s paper in which they proved their generalized Haag’s theorem, they
indicated that Haag’s original proof was inconclusive.

In the opinion of the present authors, Haag’s proof is, at least in part, inconclusive . . . .
It will not escape the discerning reader of Haag’s paper that, while we have generalized
his results, eliminated one of his assumptions (the asymptotic condition), completed his
proofs, and sharpened his conclusions, the essential physical points are Haag’s. (Hall
and Wightman, 1957)

Unfortunately, they do not characterize the shortcomings of Haag’s proof or why
it was inconclusive. The other source is a review of Haag’s paper by Dyson (1955),
where he said that the “so-called Haag’s Theorem . . . is essentially an old theorem
of L. Van Hove but is here presented in much greater generality.” Dyson also took
Haag to task somewhat for not providing any constructive solution to the problem
of interactions. Though it is unclear why Dyson is so critical of Haag’s paper,
there is one reason to be suspicious. In the abstract of Haag’s paper, he wrote, “It
is shown that the “free field vacuum” of the Tamm-Dancoff method and Dyson’s
matrix U (t1, t2) for finite t1 or t2 cannot exist” (Haag, 1955).

6. INFLUENCES ON HAAG’S FORMULATION OF THE THEOREM

Dyson and Källén suggest (in the quotations above) that they felt that Haag’s
theorem was based on the work of van Hove and Friedrichs. From Haag’s original
paper (1955), we know that he was familiar with the work of van Hove (1952) and
Friedrich (1953) as well as a preprint of the paper by Wightman and Schweber
(1955). We also know that the ideas for Haag’s paper were presented in lectures
that he gave at the CERN theoretical study group from 1952–1953. I will give a
brief review of these influences in this section.

6.1. Van Hove’s Work

There are two main papers of van Hove (1951, 1952) that are usually cited
in connection with Haag’s theorem and the mathematical problems involved in
modeling interactions in quantum field theory. In his 1951 paper, van Hove in-
vestigated the mathematical properties of the interaction Hamiltonian HI and the
total Hamiltonian H = HB + HF + gHI, where HB is the free boson Hamiltonian,
HF is the free fermion Hamiltonian, HI is the interaction Hamiltonian, and g is a
dimensionless coupling constant, in quantum field theory.5 He was interested in

5 If g = 0, there is no interaction and only free fields are present.
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whether H and HI exist as well-defined operators on the Hilbert space So of the nor-
malized stationary states ϕα of the free fields. To answer this question, van Hove
assumed that the system is put in a cubic box with periodic boundary conditions
on the walls, which was a typical assumption for the time (Wentzel, 1949). The
periodic boundary conditions change the continuous space into a lattice. Within
each box, the momentum of the total and interaction Hamiltonian is cut off for
some value K and the stationary states ϕα have finite energy and are character-
ized by having a finite number of particles (bosons, fermions, and anti-fermions)
in specific plane-wave states. The original Hamiltonians are recovered formally
by H = lim

K→∞
HK and HI = lim

K→∞
HK

I . So is the Hilbert space formed from lin-

ear combinations of the ϕα vectors: ϕ = �αcαϕα with ϕα ∈ So, cα complex, and
�α|cα|2 < ∞. So is the domain of the free Hamiltonians for fermions and bosons
and HK and HK

I are densely defined operators on it. The main result of this paper
is that for any non-zero vector ϕ = �αcαϕα in So, the total Hamiltonian and the
interaction Hamiltonian cannot be defined on So because they have infinite norms:
Hϕ = �αc′

αϕα and HIϕ = �αc′′
αϕα with �α|c′

α|2 = +∞ and �α|c′′
α|2 = +∞.

Even if HKϕ and HK
I ϕ are vectors in So, when the cutoff is removed by taking

the limit as K goes to infinity the resulting operator yields a vector that is not in
the Hilbert space of the free fields: lim

K→∞
‖HKϕ‖ = ∞ = lim

K→∞
‖HK

I ϕ‖. 6

While van Hove is generally credited as the first person to demonstrate some
of the mathematical problems with treating the Hamiltonian as a well defined
operator in quantum field theory, there are two sources that he cited where there
problems were discussed earlier. Snyder (1950) mentioned that the Hamiltonian
when applied to a state vector maps that state vector into a vector of infinite
length (1950). Van Hove obtained some preliminary results for his 1951 paper
collaboration with Gossiaux whose dissertation (1950) was on the domain of the
Hamiltonian in quantum field theory.

In both his 1951 and 1952 papers, van Hove believed that infinite tensor prod-
uct spaces might be the appropriate mathematical structure to model interactions
and on which the Hamiltonian is well defined. In his 1951 paper, he wanted to
expand the space of stationary states to include not only states where there are
a finite number of particles present, but also stationary states where there are an
infinite number of particles present. There are a nondenumerable number of these
states and they have infinite eigenvalues from HB + HF. This much larger Hilbert
space contains So as a subspace. Van Hove conjectured that H could be defined
and diagonalized in this larger space using vectors that spanned the Sg subspaces,
which depend on the value of the coupling constant g. For different values of g,
including the free field case of g = 0, the subspaces Sg and Sg′ are orthogonal

6 As van Hove pointed out, this implies that any normalized superposition of stationary states of the
free field will have infinite average values for the square of the total and interaction Hamiltonians
(when g �= 0):

〈
H 2

〉
φ

= ‖Hφ‖2 = +∞ and
〈
H 2

I

〉
φ

= ‖HI φ‖2 = +∞.
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(g �= g′). Van Hove’s result that the space of free states is orthogonal to the space
of interacting states is often cited with reference to his 1952 paper, but he had
already anticipated this result in his 1951 paper.

In his 1952 paper, van Hove examined the case of a neutral-scalar field
that was in scalar interaction with infinitely heavy fixed point sources. In this
case, an exact solution can be obtained and compared with the perturbative
solution. Van Hove stated that the origin of the divergences in this case was
due to the fact that the space of stationary states for the free field is orthog-
onal to the state space of the stationary states of the field interacting with the
sources. The implications of this are nicely summarized in Coleman’s (1953)
review of van Hove’s 1952 paper. “[Van Hove’s result] suggests that there is
no mathematical justification for using the interaction representation and the
occasional successes of renormalization methods are lucky flukes.” Van Hove
showed that while the exact solution and the method of renormalized pertur-
bations give the same S-matrix, they disagree on the unitary matrix U(−∞, t)
for finite t. Since the original Dyson framework for quantum field theory re-
lies on doing series expansions using such unitary matrices van Hove’s result
showed that these (unrenormalized) matrices do not exist. The nonexistence of the
U(−∞, t) matrix was one of the results that Haag claimed to show in the quotation
above.

6.2. Friedrichs’ Work

While van Hove investigated ultraviolet divergences (�k = ∞), Friedrichs
investigated infrared divergences (�k = 0) of bosons interacting with a source
distribution in his 1953 book, Mathematical Aspects of Quantum Field Theory.
He defined creation and annihilation operators in terms of the field operator and
the field’s canonical conjugate momentum operator. He then showed that there
are representations of the creation and annihilation operators which satisfy their
canonical commutation relations but for which the number operator is not defined.
He called a representation of the field and its canonical conjugate momentum
amyriotic if the total number operator is well defined and he called it myriotic
if the total number operator is not well defined. The most striking feature of
myriotic fields is that they do not possess a vacuum state, i.e., the no-particle state.
In the case of infrared divergences, Friedrichs showed that the representation of
the field operators is myriotic. This accounted for the problems associated with
defining the Hamiltonian. Friedrichs showed that if one used myriotic fields then
the Hamiltonian could be defined. This is roughly similar to van Hove’s suggestion
that the Hamiltonian could be defined if one allowed states that contained an infinite
number of particles since myriotic fields do not have states that a finite number
of particles. Friedrichs also showed that in certain cases the unitary operator U(t)
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does not have a limit as t → ∞, which again showed that there were problems
constructing a unitary operator U (t,∞) for finite t.

6.3. Wightman and Schweber’s Paper

There was bidirectional influence between Haag on the one hand and
Wightman and Schweber on the other. Haag was given a preprint of the Wightman
and Schweber’s paper by Wightman when he was working on his 1955 paper, and
Wightman and Schweber had access to some unpublished CERN lectures of Haag
given in 1953. The Wightman and Schweber paper also highlighted the difficulties
of making the Hamiltonian a well-defined operator. They showed that if a certain
condition is satisfied, then the Hamiltonian of a system is well-defined for just
one value of the coupling constant. On the basis of the work of van Hove, they
showed that if a certain condition is satisfied while the uncoupled or free fields has
a vacuum state, the equations of motion may show that the coupled system may
not have a vacuum state. This undermined perturbation theory which assumes
that both the free field and the coupled system have a vacuum state. This also
showed that representations which require the existence of a vacuum state may be
inconsistent with the equations of motion.

7. HAAG’S PROOF IN HIS 1955 PAPER

The work cited above was known to Haag when he wrote his 1955 paper.
The result in that paper which can be classified as “Haag’s theorem” is that the
field operators corresponding to the asymptotic, or free fields, which occur at time
t = ±∞, and the field operators corresponding to the “actual fields,” which occur
at some finite time, belong to unitarily inequivalent representations of the canonical
commutation relations (CCRs). His proof is a reductio ad absurdum. Suppose the
free fields and the “actual fields” were unitarily equivalent and satisfy the CCRs.
Haag then showed two things: (1) The vacuum states of the two representations
would have to be the same vacuum state. (2) It follows from (1) that the free fields
must satisfy a different set of canonical commutation relations. Thus, the “actual
fields” and the free fields belong to unitarily inequivalent representations of the
CCRs.

The connection with van Hove’s result is the following. Haag showed that the
representations of the “actual” and free fields as operators acting on Hilbert spaces
cannot be unitarily equivalent. Haag also assumed that these representations are
irreducible. In modern operator theory, it is a well-known mathematical fact that
two irreducible representations are unitarily inequivalent if and only if they are
orthogonal. Thus, van Hove’s result that the Hilbert spaces of the stationary state
space of the free fields is orthogonal to the stationary state space of the interacting
field (g �= 0) is contained within Haag’s theorem because, as Haag noted (1955), he
does not use a particular form of the Hamiltonian in his proof. In this sense, Haag
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generalized van Hove’s result and it would be more appropriate to call Haag’s
theorem a generalized van Hove theorem because the essential physical points
come from van Hove’s work.

8. THE HALL-WIGHTMAN-GREENBERG PROOF
OF HAAG’S THEOREM 1957–59

As was mentioned earlier, Hall and Wightman did not find Haag’s proof
conclusive. In their 1957 paper, they proved a generalized Haag’s Theorem that
came in two parts. (1) Given two neutral scalar fields that are related at a finite
time by a unitary transformation, that satisfy the CCRs, and that have unique
normalizable vacuum states that are invariant under Euclidean transformations
(translations and rotations); it then follows that the unitary transformation takes
the vacuum state of the first-field theory to the vacuum state of the second-field
theory multiplied by a constant whose absolute value is equal to one. (2) If two
field theories satisfy the assumptions of (1) and they and their vacuum states
are invariant under inhomogeneous Lorentz transformations and have no negative
energy states, then the first four vacuum expectation values are equal for all times.
This showed that no interaction could be modeled by the usual representation of
the creation and annihilation operators where the first four vacuum expectation
values differed from the free-field values. As Hall and Wightman pointed out,
their result is only valid up to the first four vacuum expectation values. Thus, even
the Hall and Wightman result did not completely prove Haag’s theorem. This was
accomplished by Greenberg (1959), who used mathematical induction to prove
that the first n vacuum expectation values are equal (for any positive integer n).

9. SUMMARY

Determining who proved “Haag’s theorem” depends on one’s particular un-
derstanding of what the theorem is about. Since the Hamiltonian is the generator of
time translations, van Hove’s work, which showed that the interaction Hamiltonian
and the total Hamiltonian are not well defined on the space of stationary states
of the free field, indicates that there would be problems constructing a unitary
operator that connects the free fields to the interacting fields. Haag’s proof can be
seen as a generalization of van Hove’s result, which shows only in a particular
case that the stationary state space of the free field is orthogonal to the stationary
state space of the field interacting with sources. Haag provided the first steps
towards the more modern way of discussing the problem in terms of the unitary
(in)equivalence of representations of the CCRs, In this way, Haag’s paper united
the work of van Hove with Friedrichs’ work on the representations of the CCRs. If
Haag’s theorem is roughly understood to be a result that shows that an interacting
field theory will have the same expectation values as a free-field theory (one would
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expect them to be different), then the Hall-Wightman-Greenberg papers are a proof
of that idea. However, if Haag’s theorem is taken to be about how the interacting
fields (or the interaction Hamiltonian) cannot be defined using the same canonical
commutation relations (or Hilbert space, respectively) as that of free fields, then
the work of van Hove, Friedrichs, Wightman, Schweber, and Haag proved this in
many cases. Though Haag’s original 1955 proof and the “generalized” version of
Haag’s theorem in Hall and Wightman (1957) have some similarities, they have
significant differences. Haag wanted to show that the free-field representation and
the “actual” or interacting field representation are not unitarily equivalent repre-
sentations of the CCRs. Hall and Wightman showed that under certain conditions,
two field theories will, up to four vacuum expectation values, have the same val-
ues. The 1959, generalized version of the Hall-Wightman proof by Greenberg
was used to show when a field theory will be equivalent to the free-field theory
without concerning itself with how the free fields might be constructed through
some asymptotic condition.
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